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Abstract: Bacillus entomopathogens, especially Bacillus thuringiensis, have been used 
extensively for control of insect pests in crops, forests, and the aquatic 
environment. Their safety for vertebrates and nontarget invertebrates has been 
thoroughly documented in a myriad of studies. Their short term effects on 
nontarget organisms that are unrelated to target insects is negligible. However, 
the effect of repeated applications on most ecosystems is relatively unknown. 
It is highly probable that any regular disruption of large insect communities, 
due to chemical or microbial insecticides or natural disaster, could have long 
term deleterious effects on higher trophic levels and ecosystem structure. The 
more diversified the food web, the less likely that complete or partial removal 
of a single species will result in catastrophic consequences. The more species a 
given intervention affects, the greater the likelihood of altering ecosystem 
structure. The safety and environmental impact of entomopathogenic bacteria 
should be evaluated in light of the risk for nontarget organisms in comparison 
with other interventions and the effect no treatment at all will have on an 
ecosystem. 
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1. INTRODUCTION 

Entomopathogenic spore forming bacteria, most notably Bacillus 
thuringiensis (Bt), are the most widely used microbial pest control agents 
(MPCA). The broad spectrum of susceptible hosts, production on artificial 
media and ease of application using conventional equipment have resulted in 
widespread use against several insect pests in crops, forest and aquatic 
habitats. 

In order to register a Bacillus species as a microbial insecticide, a series 
of studies must be conducted that assess the toxicity and infectivity of the 
candidate organism to a designated group of invertebrate and vertebrate 
nontarget organisms (NTOs). The emphasis of these studies has traditionally 
been direct effects, typically assessed in one month laboratory studies or one 
season field studies. Recently, concerns have been raised about long term 
indirect effects on NTOs when the pest species controlled by the Bacillus 
microbial insecticide becomes unavailable as a source of food. Additionally, 
questions have been raised about the vulnerability of endangered species of 
NTO to these insecticides. In the following pages we will highlight studies 
that address all of these safety issues and attempt to place these data in 
perspective.  

The safety of Bacillus entomopathogens for NTOs has been addressed by 
a number of researchers over the past 50 years. The literature before 1989 on 
their direct effects on specific NTOs was reviewed in several chapters in 
Safety of Microbial Insecticides [49]. Research on the safety and 
environmental impact of entomopathogenic Bacillus spp. that has been 
conducted since 1989 will be emphasized in this chapter. 

2. DIRECT EFFECTS OF BACILLUS 
ENTOMOPATHOGENS ON NTO 
INVERTEBRATES 

2.1 Bacillus thuringiensis (Bt) 

Here we address varieties of Bt that do not produce the β-exotoxin. 
Because of its toxicity to numerous NTOs including vertebrates, all 
commercial formulations intended for use in crops, forests and aquatic 
systems no longer contain β-exotoxin. The reader interested in β-exotoxin 
should refer to the reviews of Sebesta et al. [76] and Melin and Cozzi [56]. 
Varieties of Bt, the insecticidal activity of which is based on Cry toxins (also 
known as δ-endotoxins), are now commercially available for use against a 
wide variety of insect pests including species of Lepidoptera, Coleoptera and 
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Diptera. The individual Cry toxins are for the most part active against single 
orders of insect pests and may affect one to several families within an order. 
There are exceptions such as the Cry2 toxins which are active against certain 
families of Diptera and Lepidoptera. The specificity of toxins is determined 
by the molecular configuration of the toxin and the physiology of the host 
midgut and presence of toxin receptors on the midgut epithelium [20, 75]. 

The order with the broadest spectrum of families affected by Bt toxins, 
most notably Cry1 toxins, is the Lepidoptera. Discovery and development of 
hundreds of lepidopteran-active isolates and subsequent genetic 
manipulation of some has resulted in production of highly efficacious 
biopesticides for control of several lepidopteran pests of crops and forest. 
The vast majority of non-lepidopteran NTOs are not directly affected by 
exposure to commercial products or purified Cry toxins used for control of 
lepidopteran pests [43, 53, 56, 83, 84]. There are some exceptions that will 
be presented in subsequent sections of the chapter.  

Concerns over the impact of Bt products on nontarget Lepidoptera is 
predominantly focused on indigenous species found mainly in forest habitats 
or habitats peripheral to agroecosystems. Laboratory bioassays are the 
starting point to determine possible untoward effects on nontarget 
Lepidoptera, but they may not always accurately reflect the level of impact 
in nature. However, phenomena that may be difficult to quantify in the field 
may be more readily assessed in the lab. For example, Peacock et al. [70] 
evaluated the effects of two formulations of Bt on 42 species of native 
Lepidoptera and demonstrated differential susceptibility due to species and 
larval age. They also showed that larvae surviving sublethal dosages of Bt 
were likely to reach adulthood. 

Measurement of direct effects in field situations is the most reliable 
method for determining the impact of a Bt spray program on nontarget 
Lepidoptera. Several researchers have reported on the susceptibility of 
nontarget Lepidoptera in forest that had been treated with Bt [25, 39, 60, 73, 
90, 95]. Beneficial and endangered lepidopteran species are among those 
reported at risk [5, 25, 38]. In addition to effects within treatment zones, 
Whaley et al. [95] demonstrated that drift of aerially applied Bt subsp. 
kurstaki (Btk) for gypsy moth control, killed nontarget Lepidoptera as much 
as 3000 m from the application site. 

Effects of Bt isolates with activity toward Lepidoptera have negligible 
effects on insects in aquatic habitats at operational dosages [17]. 
Kreutzweiser et al. [42] observed no significant effect of high concentrations 
of Btk on drift and mortality of Ephemeroptera, Plecoptera, and Trichoptera. 
However, they observed 30% mortality in the plecopteran, Taeniopteryx 
nivalis, exposed to the massive concentration of 600 iu/ml for 24 hours. 



4 Chapter 4.0
 
Mortality of species from pristine lotic habitats may be due to the effects of 
turbidity and formulation components rather than to Bt toxins. 

Predators that are exposed to prey that were fed lepdiopteran-active Bt 
have not been shown to be susceptible to Bt toxins [7, 100], but Chrysoperla 
carnea that were fed directly on purified Cry1Ab toxin in diet, responded 
with 57% mortality compared to 30% control mortality [29]. Several 
additional studies on the effect of Bt on predators and other NTOs are 
summarized by Melin and Cozzi [56] and the USDA Forest Service [89]. 

There has been less field testing of beetle active isolates containing Cry3 
toxins against NTOs. Field trials of Bt subsp. tenebrionis (Btt) in 
combination with the predatory bug, Perillus bioculatus, for control of 
Colorado potato beetle, Leptinotarsa decemlineata, demonstrated 
compatibility between the bacterium and predator [9, 32]. In another study, 
five weekly applications of low and high label rates of a genetically 
engineered isolate of Bt for control of L. decemlineata, resulted in fair to 
good control of the beetle with no detectable effects on NTOs including 
predatory Hemiptera [46]. In contrast, few or no predatory Hemiptera were 
observed in plots treated with the systemic carbamate insecticide, aldicarb 
[46]. Giroux et al. [21] reported on the negative effects of beetle-active Btt 
on duration of development of Coleomegilla maculata (Coccinellidae) 
larvae, but concluded it did not cause mortality. Langenbruch [51] reported 
on the lack of untoward effects of Btt on other predators in the potato 
agroecosystem. 

Isolates of Bt with Cry4 toxins (e.g. Bt subsp. israelensis [Bti] and others) 
are highly active against mosquitoes and black flies [48] and have been 
shown to kill dipteran larvae in closely related families in the sub-order 
Nematocera, such as certain chironomid, tipulid and blepharocerid species 
[2, 8, 26, 47, 61, 97]. Numerous bioassays and field trials of Bti against 
NTOs other than Nematocera have demonstrated that the vast majority are 
not directly affected by Bti toxins [8, 27, 36, 45, 47, 58, 97]. Filter feeding 
species are the most likely to capture and concentrate the parasporal crystals 
of Bti and formulation components that may be harmful. Wipfli and Merritt 
[97] produced mortality in the filter-feeding mayfly, Arthroplea bipunctata, 
at 500 times the concentration required for black fly control. Increased drift 
of black flies and NTOs, such as species of Ephemeroptera, Plecoptera, 
Trichoptera, and Blepharoceridae following treatment with Bti has been 
reported by some authors ostensibly due in part to increased turbidity and 
formulation components [2, 12, 47, 97]. 

Under most conditions the majority of predators of mosquitoes and black 
flies are not susceptible to Bti. However, predaceous mosquito larvae in the 
genus Toxorhynchites are susceptible to Bti when fed on prey larvae that 
have been exposed to the bacterium [44, 52]. Because of the lack of direct 
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deleterious effects in other predatory insects, Bti is an ideal microbial 
insecticide for use in integrated control programs. Although its larvicidal 
activity is short lived in most habitats [48], undisturbed predators can 
continue suppression of target insects [1, 47, 66]. 

2.2 Direct effects of other Bacillus entomopathogens 

Relatively few studies have been conducted on the effects of Bacillus 
sphaericus and B. popilliae on nontarget invertebrates. Both organisms are 
considerably more specific in their host spectra than Bt.  

Bacillus sphaericus is an entomopathogen of mosquitoes, but has a 
markedly narrower mosquito host range than Bti and does not appear to 
directly affect nontarget fauna including chironomids and other Nematocera 
[1, 47, 63, 91,101]. The bacterium is attractive because of elevated activity 
against Culex and Psorophora species and its greater persistence in 
organically enriched larval habitats [62, 67]. Recycling of B. sphaericus in 
larval cadavers has been reported or suspected, further extending its activity 
and persistence in the environment [11,40, 67]. Spores may be returned from 
inaccessible substrates by feeding activity of NTOs which are not harmed by 
the bacterium [40, 101]. 

The efficacy of B. sphaericus against certain mosquito species, 
persistence in larval habitats and compatibility with predators has provided 
extended control in certain circumstances [1, 47].  

Isolates of B. popilliae are specific pathogens of the Scarabaeidae with no 
demonstrated effects on NTOs [16, 69]. Their lethal activity is based on 
septicemia in the host and not on the production of toxin [6, 16] as is the 
case with B. thuringiensis and B. sphaericus. Although spores of B. popilliae 
may persist for protracted periods of time in the soil, they only germinate, 
grow and sporulate in nature within scarab hosts. 

3. INDIRECT EFFECTS OF BT ON NONTARGET 
INVERTEBRATES 

The indirect effect of Bt on nontargets can be broadly divided into two 
categories: immediate impact and longer term impact. The implications of 
longer term impact will be addressed under section 6 of this chapter. The 
immediate indirect effects are most often observed in insects that prey upon 
or parasitize targeted insects.  

Parasitoids are most commonly affected by premature death of the host 
before development can be completed [3, 4]. Brooks [4] reviewed the 
literature on host-parasitoid-pathogen interactions and presented several 
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examples of parasitoids that were unable to complete development due to 
death of their hosts caused by Bt and B. popilliae. The effects of Bt treatment 
of host insects on survival and percentage parasitism depends on the host, 
timing of applications and dosage of Bt. Nealis and van Frankenhuyzen [65] 
noted that spruce budworm larvae, Choristoneura fumiferana, that are 
parasitized by Apanteles fumiferanae (Braconidae) are more likely to survive 
exposure to Bt because they feed less. However they did observe a 50-60% 
reduction in parasitoid populations when the host was treated with Bt as third 
instars. They observed better parasitoid survival when late fourth instars 
were treated and concluded that Bt would complement the beneficial effects 
of A. fumiferanae. A benefit to ingestion of sublethal dosages by host insects 
is an extended period of development and increased exposure to parasitoids 
[94]. 

The effects of host removal on the survival of predators will depend on 
the specificity of the predator, and the availability of other prey. Studies 
conducted in aquatic habitats demonstrate some changes in feeding habits of 
two species of Plecoptera. Acroneuria lycorias, a generalist predator, 
preferred live larvae, but after treatment of prey populations (simuliids) with 
Bti will feed on dead larvae and may exploit other food sources [59]. The 
total prey ingested by A. lycorias, however, declined after treatment of 
streams with Bti [96]. The detrivore, Prostoia completa, prefers dead larvae 
and was not affected by Bti treatments [59]. 

Synergistic and antagonistic activity between Bt and other 
entomopathogens has been reported. Koppenhöfer and Kaya [41] 
demonstrated synergistic activity between Bt subsp. japonensis and the 
entomopathogenic nematodes, Heterorhabditis bacteriophora and 
Steinernema glaseri for control of white grubs. A decrease in the incidence 
of nucleopolyhedrovirus infections has been reported in forests treated with 
Btk [93, 99]. 

4. EFFECTS OF BACILLUS ENTOMOPATHOGENS 
ON VERTEBRATES 

Vertebrate safety testing traditionally refers to a series of tests designed 
to evaluate the infectivity and pathogenicity of a candidate MPCA. Initially, 
tests evaluating infectivity and pathogenicity were additions to the standard 
protocols used to evaluate the toxicity of chemicals, but considerable 
evolution of these tests has occurred over the past 40 years. An example of 
this process is the elimination of long term (two year) feeding studies from 
the evaluation of MPCAs, because these tests were designed to assess 
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carcinogenicity and this is not applicable. Infectivity is a concern unique to 
the evaluation of the safety of entomopathogenic bacilli.  

Current MPCA tests are typically short term (< one month), and evaluate 
infectivity using a high dose of the MPCA and include an invasive route of 
exposure such as intravenous or intraperitoneal injection [79, 80]. If 
mortality occurs, it must be judged in the context of the test administered. 
For example, mortality following intracerebral injection of rats with 2 x 108 
colony forming units (cfu) of Btk is not surprising but would be cause for 
concern if it occurred after ingestion [79, 80]. A finding of acceptable risk 
does not mean that under every circumstance a product will never prove 
harmful. Burges [6] stated that "Registration of a chemical is essentially a 
statement of usage in which the risks are acceptable. The same must apply to 
biological agents". Even when products have successfully cleared these 
hurdles, new questions can arise based on the changing public perception of 
risk. Questions have been raised periodically concerning the susceptibility of 
immunosuppressed individuals to Bt products [18]. 

What is the proper way to design safety tests to address this issue, or is it 
even necessary? There has been considerable debate about the value of 
safety tests employing immunosuppressed animals. Those opposing this type 
of safety testing contended that immunosuppressed individuals would 
succumb to a variety of opportunistic agents before they would become 
infected by an entomopathogen and furthermore, interpreting data from 
immunosuppressed animal studies is problematic [6]. In contrast, Shadduck 
[77] advocated a philosophy of testing known as maximum challenge, which 
included the use of immunosuppressed or immune deficient animals. 
Shadduck noted however, that a disadvantage of this approach is that a 
potentially useful organism may be unfairly labelled as unsafe based on a 
single test and emphasized that hazard evaluations must be based on a series 
of tests. A recent study illustrates the difficulty in interpreting test results 
using immunosuppressed animals [28]. This study reported that Bt subsp 
konkukian was infectious when injected subcutaneously (107 cfu) in 
cyclophosphamide-injected mice. However, the mice were only followed for 
two days after injection and the alleged infection did not become systemic. 
This study underscores the caveat that a single test cannot be used to 
determine the hazard of an entomopathogen. 
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4.1 Direct effects of Bt on mammals 

There have been thousands of research papers published on Bt, but there are 
relatively few published studies on vertebrate safety. That does not mean 
that research has not been conducted, but rather that these data are 
proprietary. Initially, one of the main issues raised about the safety of Bt was 
its close relationship to B. anthracis. Some feared that it would somehow 
mutate and become a human pathogen although Steinhaus [88] eloquently 
rebutted these concerns. More recent questions have centered on the 
relationship between Bt and B. cereus. B. cereus has been recognized as the 
causal agent of an increasing number of cases of food poisoning and as a 
source of ocular infections [14, 37]. Other researchers have reported that 
various isolates belonging to several Bt serotypes produced B. cereus 
enterotoxins [10]. Bt production of enterotoxins has been rebutted by studies 
that have raised questions about the specificity of the in vitro test used to 
detect enterotoxins [78]. Additionally, no evidence of mammalian toxicity 
has been found in the numerous laboratory safety studies conducted on Bt 
insecticides; many of these tests were designed to assess the presence of 
toxins with mammalian activity [15]. No evidence of human infection has 
been found in epidemiologic studies following mass Bt forest spraying 
campaigns [18, 22, 68]. Finally, at this point Bt products have been used for 
decades and numerous people have been exposed; there has been ample 
opportunity for any negative effects to be recognized.  
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As early as 1958, Thuricide, a Bt subsp. thuringiensis insecticide, was 
granted an exemption from tolerance by the United States Food and Drug 
administration based on a series of human and animal studies [19]. These 
studies included serial passage through mice, intraperitoneal injection in 
guinea pigs, inhalation studies in mice and human volunteers, and short term 
feeding studies using human volunteers. Various isolates and subspecies of 
Bt were also tested in long term feeding studies, using a daily dose of 109 
spores per rat per day for 730 days [33] and a daily dose of 1012 spores per 
sheep per day for 150 days [23]. In highly invasive tests, Btk and Bti were 
injected into rats intracerebrally with inocula containing as many as 106 cfu; 
no mortality resulted [79]. In contrast, subcutaneous injection of as little as 
four spores of B. anthracis can kill mice [50].  

Determining the infectivity of entomopathogenic bacilli is complicated 
by their biology. Inocula typically used in safety tests contain a mixture of 
pores and vegetative cells; commercial products may contain both spores 
and vegetative cells as well. The spores can remain viable in tissue for 
periods longer than six weeks [79, 80]. This ability to remain viable without 
multiplying is referred to as persistence [81]. Persistence may cause 
confusion, if researchers or clinicians regard simple recovery of Bt following 
exposure as synonymous with infection. In assessing safety, it is more useful 
to regard infection as established when recovery of a MPCA is linked to 
tissue damage. 

There are three well-documented reports associating human infection 
with Bt. In the first case, a farmer was accidentally splashed in the face with 
a commercial preparation of Btk. An ocular ulcer subsequently developed 
and Bt was recovered [74]. In the second case, a laboratory worker 
accidentally stuck himself with a needle used to resuspend a cell spore 
crystal pellet of Bti and Acinetobacter calcoaceticus var anitratus [92]. In 
the final case, a French soldier stepped on a land mine and suffered a 
traumatic injury to his leg. Twenty-four hours after the blast Bt subsp. 
konkukian was recovered from multiple abscesses [28]. When the first two 
reports are examined critically, one cannot definitively state that Bt caused 
infection. In the first case, viable spores may have persisted in the 
conjunctival cul de sac and been recovered when the eye was swabbed. In 
the second case, the laboratory worker was exposed to both Bt and another 
bacterium, as well as metabolites in the culture medium. Bt and A. 
calcoaceticus var anitratus were cultured from the wound, so it is impossible 
to state that Bt alone caused the infection. The only case where Bt was 
clearly the cause of infection was the French soldier. A land mine blast is 
certainly a worst case scenario and the Bt serotype recovered is not used 
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commercially. Repeated human exposure by this route is unlikely. When one 
takes into account the tens of thousands of humans exposed to Bt products 
over the past 40 years, we submit that this single clear-cut case of human 
infection underscores the mammalian safety of Bt. 

 

4.2 Direct effects of Bt on other vertebrates  
In the United States, as part of the testing necessary for registration, Bt 

products were administered orally to mallard ducks (Anas platyrhynchos) 
and northern bobwhite quail (Colinus virginianus). The exposure period was 
five days and the total dose was as high as 1 x 1012 cfu/kg; there were no 
adverse effects reported. Three species of fish were also tested during the 
registration process, Sheepshead minnow (Cyprionodon variegatus), 
Steelhead trout (Oncorhynchus mykiss) and Bluegill sunfish (Lepomis 
macrochiurus). These species were exposed to Bt in concentrations as high 
as 2.87 x 1010 cfu/L in a 30-day static renewal test; test solutions were 
renewed twice weekly. There was no evidence of pathogenicity or infectivity 
(bacterial recovery 100 times the administered dose). In one study, there was 
significant mortality among Steelhead trout exposed to Bt. The mortality was 
attributed to the extreme turbidity of the water in the test group. The fish 
could not see their food, and in turn attacked each other (WHO, personal 
communication). Data published in refereed journals on direct effects of Bt 
insecticides support the conclusions of these industry studies. Starlings 
(Sturnus vulgaris), white crowned sparrows (Zonotrichia leucephrys) and 
slate-colored junco (Junco hyemalis)fed 7.5 x 108 spores of Bt experienced 
no mortality [85]. Caged rock bass (Ambloplites rupestris) exposed to Bt 
over a three-day period experienced no mortality [58]. In contrast Snarski 
[87] reported that larval and juvenile fathead minnows (Pimephales 
promelas) exposed to 2.0 x 106 cfu/ml of Bti died within 24 hours. However, 
the mortality was due to dissolved oxygen depletion by formulation 
components. Wipfli et al. [98] were also able to kill the embryos of Brook 
trout (Salvelinus fontinalis), Brown trout (Salmo trutta) and Steelhead trout 
with Bti. Although mortality occurred, it was only achieved using levels 
12,000 times the recommended dose rate. Mortality was attributed to the 
formulation components. In conclusion, there is no evidence from industry 
and academic studies that Bt insecticides are infectious or pathogenic to 
birds and fish. Formulated Bt products can kill fish indirectly by depleting 
oxygen levels or making it difficult to find food, but to do so must be applied 
at a level that is many thousand times the recommended label rate. 
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4.3 Direct effects of B. sphaericus on mammals and other 
vertebrates 

B. sphaericus was subjected to the same infectivity and pathogenicity 
studies as Bt for registration in the United States. These data are 
unpublished, but the tests included inhalation, oral and intraperitoneal 
exposure to at least 106 cfu per test animal. Nontarget vertebrate studies 
included fish and birds. Additional studies were conducted by researchers 
funded by the WHO and included intraocular, intracerebral, subcutaneous, 
oral, intraperitoneal and aerosol exposure [80, 81]. There was no evidence of 
infectivity or pathogenicity in these studies. Many of these tests emphasized 
intracerebral injection (as many as 107 cfu) because there were reports in the 
literature associating B. sphaericus with fatal human central nervous system 
infections. It is noteworthy that in all cases, when these human isolates were 
injected in experimental animals the isolates were uninfectious. The most 
well documented human isolate of B. sphaericus was in fact misidentified; 
nevertheless, these cases are periodically cited as cause for concern [82]. In 
conclusion, entomopathogenic isolates of B. sphaericus were noninfectious 
and nonpathogenic in laboratory animal studies that included worse case 
exposure scenarios such as intraocular and intracerebral injection. 

4.4 Direct effects of B. popilliae on mammals and other 
vertebrates 

The mammalian safety studies on B. popilliae are summarized by 
Obenchain and Ellis [69]. Test animals included mice, rats, guinea pigs, 
rabbits, monkeys, starlings, and chickens. Doses as high as 108 spores were 
used in these studies, and there was no evidence of infectivity or 
pathogenicity. Heimpel [24] reported that a Maryland researcher ate a 
spoonful of spore dust to demonstrate its safety. There are no published 
studies on the infectivity and pathogenicity of B. popilliae to fish 
presumably because of its specificity as well the fact that B. popilliae runoff 
into aquatic systems is minimal. 
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5. INDIRECT EFFECTS OF BACILLUS 

ENTOMOPATHOGENS ON VERTEBRATES 

5.1 Indirect effects of Bt on mammals and other 
vertebrates 

It is far more difficult to calculate the indirect effects of Bacillus based 
insecticides than direct effects because these determinations must be made in 
the field. Natural population fluctuations may be confounded with the effect 
of the microbial insecticide, and the proper time scale for observation may 
encompass many years. Additionally, one can argue about what is the proper 
control to include in these studies. Should the control plots be untreated, or is 
more appropriate to use as the control plots treated with currently used 
chemical insecticides? In the case of a forest defoliator such as the gypsy 
moth (Lymantria dispar), should the control plots be defoliated? These 
issues must be addressed when interpreting data on indirect effects.  

Numerous published studies of the indirect effects of Bt on small 
mammals and birds concluded that any effects were minor. Btk, fenitrothion 
and aminocarb were applied aerially for control of jack pine budworm and 
there were no significant differences in abundance of small mammal 
populations that could be attributed to Bt [35]. Spraying Btk in forests 
significantly reduced the proportion of caterpillars brought to the nests by 
Chestnut-backed chickadees (Parus rufescens) but reproductive success and 
nestling growth was not affected (WHO, personal communication). Nagy 
and Smith [64] studied the effect of Btk aerial application on hooded 
warblers (Wilsonia citrina) and reported that overall, reduction in 
Lepidoptera larvae due to spraying had minimal effect, although differences 
in feeding rates occurred for small clutches. Rodenhouse and Holmes [72] 
studied food reductions in black-throated blue warblers (Dendroica 
caerulescens) using Bt, and found that when caterpillar abundance was 
reduced, the warblers made significantly fewer nesting attempts and that 
diets of hatchlings included fewer caterpillars. However, clutch size, 
hatching success, and the number of fledglings/nest did not differ between 
treated and control sites. Finally, Holmes [30] studied the reproduction and 
behavior of Tennessee warblers (Vermivora peregrina) in forests treated 
with Btk and tebufenozide. Nestling growth and survival were unaffected by 
either insecticide, although females in the plots treated with tebufenozide 
spent more time foraging. 
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5.2 Indirect effects of B. sphaericus and B. popilliae on 

mammals and other vertebrates 

There are no studies available on the indirect effects of B. sphaericus. 
This is due in part to its recent commercialization, and since it is used to 
control mosquitoes there is less concern about its impact on forests. If 
studies are conducted, they will presumably focus on assessing any 
deleterious effects on fish caused by prey reduction. There are no published 
studies of the indirect effects of B. popilliae as well. In the case of B. 
popilliae, it was registered before current tests were mandated, and it was 
then grandfathered into existing legislation when the rules changed. As 
stated above, since B. popilliae is not used to treat forests or in aquatic 
habitats, there have been few concerns expressed about effects on 
vertebrates. 

6. LONG TERM IMPACT OF BACILLUS 
PATHOGENS USED AS MPCAS 

There is a paucity of studies that have assessed the long term impact of 
Bacillus entomopathogens on ecosystem community structure. Of the three 
pathogens addressed in this chapter, B. thuringiensis is the best studied in 
this regard. Naturally occurring Bt is found throughout the world in a 
number of habitats, yet relatively little is known regarding its role in 
ecosystems. There are three main theories on the role of Bt in nature [55]. 
Varieties of Bt have been referred to as entomopathogens, soil organisms, or 
saprophytic inhabitants of the phylloplane. Although widespread in soil 
habitats [54], they usually exist in low numbers in soils relative to other soil 
bacilli such as Bacillus cereus and do not germinate and grow in the soil 
habitat as readily as B. cereus. Diverse varieties have also been isolated from 
leaf surfaces [86] and grain dust [13]. Natural infections in insects are 
common in certain protected habitats such as grain silos, but epizootics 
caused by Bt are rare. Although spores can persist in soil and aquatic habitats 
[57, 71], parasporal inclusions are rapidly denatured in the field. However, in 
protected field settings, insecticidal activity may persist for up to 30 days 
[39]. Applications of Bt bioinsecticides to agroecosystems and other habitats 
usually do not result in a build up of spores in the environment. A steady 
decline in the viability of spores is observed, especially those exposed to 
sunlight [34]. As a microbial control agent, Bt is always inundatively applied 
to infestations of insects and results in rapid kill of target insects usually 
without recycling. As discussed above, their short term effects on NTOs that 
are unrelated to target insects is minimal. Although Bt has been used 
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extensively in a variety of habitats, its long term effects on most ecosystems 
is relatively unknown. Assessment of the long term environmental impact of 
Bt in agroecosystems may be difficult due the short term nature of such 
systems and the effect of other agricultural practices on community 
structure. Stable environments such as forests and permanent aquatic 
habitats provide the best systems in which to monitor the impact of repeated 
Bt treatments. 

Large scale control programs that utilize Bt for suppression or eradication 
of pests such as gypsy moth provide an opportunity to monitor long term 
effects of the bacterium. USDA Forest Service [89] contends that permanent 
changes in nontarget populations do not appear likely in gypsy moth 
suppression projects. Suppression treatments normally consist of a single 
application of Btk in the spring when target foliage averages 45% expansion. 
However, eradication treatments may include 2-3 applications on a yearly 
basis. Miller [60] observed reductions in species richness in the guild of leaf-
feeding Lepidoptera in forest that was treated over a three year period. Other 
authors also report a decline in species richness and diversity in Lepidoptera 
in forests after Btk treatments [73, 90]. Risks could be highest for univoltine 
species especially when populations of sensitive species are clumped in a 
restricted habitat within the treatment zone [60]. Factors that will contribute 
to the long term impact on individual susceptible species include voltinism, 
phenology and distribution of the insect, location within the habitat, and the 
number and frequency of Bt applications. Sample et al. [73] concluded that 
the long term impact of gypsy moth reduction could benefit some native 
species. 

Routine treatment of mosquito breeding sites with Bti in several 
programs around the world is on the increase. Mosquito control efforts in the 
Rhine Valley of Germany rely exclusively on applications of Bti and to a 
lesser extend, B. sphaericus. Becker [Chapter 6.2] reports no long term 
deleterious effect on NTOs that are monitored as part of the Rhine Valley 
program. However, long term monitoring of a wetland ecosystem in the 
United States indicated that initial regular application of Bti for control of 
mosquito larvae did not result in short term changes [26, 27], but after the 
wetlands were treated with the bacterium for 2-3 years, species diversity and 
richness declined significantly [26]. 

Lotic habitats have also been periodically or regularly treated with Bti for 
control of black fly larvae in Africa, Brazil and North America. The longest 
ongoing use of the bacterium in rivers has been in the Onchocerciasis 
Control Program in West Africa where it is used as an intervention during 
the dry season [31]. Although alternation with conventional chemical 
larvicides during the wet season precludes long term assessment of the 
individual impact of Bti, Dejoux and Elouard [12] contend that there is no 
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evidence of long term deleterious effects on ecosystems receiving weekly 
applications during the dry season. However, the structure of the invertebrate 
community in the Maraoué River in Ivory Coast after one year of treatment 
with Bti was different in some respects from community structure before 
treatment and after treatment with temephos and chlorphoxim [12]. In the 
United States, Molloy [61] observed very little effect on NTOs after multiple 
applications of Bti in small streams. The most sensitive nontarget species, a 
filter feeding chironomid, responded with an average of 23% mortality to a 
concentration of Bti that killed 98% of simuliid larvae. Wipfli and Merritt 
[96] observed that reduction of simuliid larvae with Bti indirectly and 
differentially affected predators. Specialist predators in black fly-poor 
environments were most affected, whereas generalist predators were least 
affected. 

7. CONCLUSION 

It is highly probable that any regular disruption of large insect 
communities, due to chemical or microbial insecticides or natural disaster, 
could have long term deleterious effects on higher trophic levels and 
ecosystem structure. The more diversified the food web, the less likely that 
complete or partial removal of a single species will result in catastrophic 
consequences. The more species a given intervention affects, the greater the 
likelihood of altering ecosystem structure. The safety and environmental 
impact of entomopathogenic bacteria should be evaluated in light of the risk 
for NTOs in comparison with other interventions and the effect no treatment 
at all will have on an ecosystem. Major defoliation of a forest by a pest 
insect such as the gypsy moth, for example, may have broader and more 
intense long term negative effects on the ecosystem than periodic removal of 
gypsy moths and affected nontarget Lepidoptera. If the complete removal of 
an introduced pest has deleterious effects on predators that have grown 
dependent on the pest, but an ecosystem reverts to its original state, should 
that be considered catastrophic? 
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